type
status
date
slug
summary
tags
category
icon
password
通用的加载和保存方式
SparkSQL 提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的 API,根据不同的参数读取和保存不同格式的数据,SparkSQL 默认读取和保存的文件格式 为 parquet
- 加载数据
spark.read.load 是加载数据的通用方法
如果读取不同格式的数据,可以对不同的数据格式进行设定
- format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和 "textFile"。
- load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载 数据的路径。
- option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable 我们前面都是使用 read API 先把文件加载到 DataFrame 然后再查询,其实,我们也可以直 接在文件上进行查询: 文件格式.`文件路径`
- 保存数据
df.write.save 是保存数据的通用方法
如果保存不同格式的数据,可以对不同的数据格式进行设定
- format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和 "textFile"。
- save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。
- option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable 保存操作可以使用 SaveMode, 用来指明如何处理数据,使用 mode()方法来设置。 有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。
SaveMode 是一个枚举类,其中的常量包括:
Scala/Java | Any Language | Meaning |
SaveMode.ErrorIfExists(default) | "error"(default) | 如果文件已经存在则抛出异常 |
SaveMode.Append | "append" | 如果文件已经存在则追加 |
SaveMode.Overwrite | "overwrite" | 如果文件已经存在则覆盖 |
SaveMode.Ignore | "ignore" | 如果文件已经存在则忽略 |
Parquet
Spark SQL 的默认数据源为 Parquet 格式。Parquet 是一种能够有效存储嵌套数据的列式 存储格式。
数据源为 Parquet 文件时,Spark SQL 可以方便的执行所有的操作,不需要使用 format。 修改配置项spark.sql.sources.default,可修改默认数据源格式。
- 加载数据
- 保存数据
JSON
Spark SQL 能够自动推测 JSON 数据集的结构,并将它加载为一个 Dataset[Row]. 可以 通过 SparkSession.read.json()去加载 JSON 文件。
注意:Spark 读取的 JSON 文件不是传统的 JSON 文件,每一行都应该是一个 JSON 串。格 式如下:
- 导入隐式换行
import spark.implicits._
- 加载JSON文件
val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)
- 创建临时表
peopleDF.createOrReplaceTempView("people")
- 数据查询
CSV
Spark SQL 可以配置 CSV 文件的列表信息,读取 CSV 文件,CSV 文件的第一行设置为数据列
MySQL
Spark SQL 可以通过 JDBC 从关系型数据库中读取数据的方式创建 DataFrame,通过对 DataFrame 一系列的计算后,还可以将数据再写回关系型数据库中。如果使用 spark-shell 操 作,可在启动 shell 时指定相关的数据库驱动路径或者将相关的数据库驱动放到 spark 的类 路径下。
bin/spark-shell --jars mysql-connector-java-5.1.27-bin.jar
IDEA中通过JDBC对MySQL进行操作
- 导入依赖
- 读取数据
- 写入数据
Hive
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也 可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含 Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive 支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编 译时添加了 Hive 支持。
若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark 的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以 运行。 需要注意的是,如果你没有部署好 Hive,Spark SQL 会在当前的工作目录中创建出 自己的 Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默 认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。 spark-shell 默认是 Hive 支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。
- 内嵌的Hive
如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可.
Hive 的元数据存储在 derby 中, 默认仓库地址:$SPARK_HOME/spark-warehouse
向表加载本地数据
- 外部的Hive
如果想连接外部已经部署好的 Hive,需要通过以下几个步骤:
- Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下
- 把 Mysql 的驱动 copy 到 jars/目录下
- 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下
- 重启 spark-shell
- 运行Spark SQL CLI
Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在 Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似一 Hive 窗口
bin/spark-sql
- 运行Spark beeline
Spark Thrift Server 是 Spark 社区基于 HiveServer2 实现的一个 Thrift 服务。旨在无缝兼容 HiveServer2。因为 Spark Thrift Server 的接口和协议都和 HiveServer2 完全一致,因此我们部 署好 Spark Thrift Server 后,可以直接使用 hive 的 beeline 访问 Spark Thrift Server 执行相关 语句。Spark Thrift Server 的目的也只是取代 HiveServer2,因此它依旧可以和 Hive Metastore 进行交互,获取到 hive 的元数据。
如果想连接 Thrift Server,需要通过以下几个步骤:
- Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下
- 把 Mysql 的驱动 copy 到 jars/目录下
- 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下
- 启动 Thrift Server
sbin/start-thriftserver.sh
- 使用 beeline 连接 Thrift Server
bin/beeline -u jdbc:hive2://localhost:10000 -n root
- 代码操作Hive
- 导入依赖
- 将 hive-site.xml 文件拷贝到项目的 resources 目录中,代码实现
注意:在开发工具中创建数据库默认是在本地仓库,通过参数修改数据库仓库的地址:
config("spark.sql.warehouse.dir", "hdfs://localhost:8020/user/hive/warehouse")
如果在执行操作时,出现如下错误:
可以代码最前面增加如下代码解决:
System.setProperty("HADOOP_USER_NAME", "root")
此处的 root 改为你们自己的 hadoop 用户名称
- 作者:DewarTsang
- 链接:https://funtalk.top/article/aa57fdbc-a63f-42ff-8215-0a951c83edd3
- 声明:本文采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。